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The intestinal mucosa provides both a physiologic and im-
munologic barrier to a wide range of microorganisms and
foreign substances. In general, the mucosal immune system is
homeostatic despite the considerable antigenic load in the
intestine. When an imbalance does occur in the regulation of
this response, gut barrier dysfunction and inflammatory bowel
disease are observed. Protozoan parasites that gain access to
the host through the mucosal tissue of the alimentary tract may
influence the development of such intestinal inflammatory dis-
orders. Gut inflammatory diseases are associated with the pro-
duction of various inflammatory cytokines including interleu-
kin-1 (IL-1), IL-8, or tumor necrosis factor alpha (TNF-a) and
gamma interferon (IFN-g) that may be produced by mucosal
epithelial cells or by neighboring cells from the immune sys-
tem. These immune products may act as chemoattractants
(chemokines) for specific inflammatory cells, including macro-
phages, monocytes, neutrophils, and lymphocytes, that contrib-
ute to the mucosal inflammation. Elevated levels of nitric oxide
(NO)-derived metabolites have been associated with these
Th1-mediated inflammatory disorders. Although this proin-
flammatory response may be necessary to clear the infection it
may invoke pathologic and potentially destructive changes in
the tissue. In normal physiologic conditions, a homeostatic
balance is maintained and the inflammatory disorders are pre-
vented by downregulation of the immune response in the in-
testine.

A number of immune mediators are potentially involved in
downregulation of the inflammatory response. Two cytokines,
in particular, transforming growth factor b (TGF-b) and IL-10,
appear to be candidates responsible for the downregulation of
NO production. TGF-b is a potent immunoregulatory agent
that affects proliferation (1, 82), the state of activation (69, 73)
and differentiation (76) of the T-cell response. TGF-b may
impair IL-12 production (74) that stimulates IFN-g synthesis
and the proliferation of both T and NK cells. TGF-b alters
expression of T-cell costimulatory molecules, in particular,
CD40/CD154 interactions that are responsible for the produc-
tion of IL-12 (91). Recent studies involving genetically im-
paired mice for some members of the TGF-b family emphasize
the role of TGF-b as a master regulator of immune cell func-
tion (53).

Another cytokine associated with downregulation is IL-10
that can be produced by a large variety of immune cells, in-
cluding T lymphocytes, that express the Th2 phenotype, B
cells, and macrophages. IL-10 can downregulate IFN-g synthe-
sis by Toxoplasma gondii-stimulated NK cells (88) and T cells
(41) as well as a wide variety of macrophage-derived proin-
flammatory monokines (66), suggesting a critical role in mac-
rophage effector functions against different pathogens (26).
IL-10 inhibits IFN-g synthesis by NK and Th1 lymphocytes via
inhibition of macrophage IL-12 synthesis (34). IL-10 is associ-
ated with the downregulation of the expression of costimula-
tory molecules, which are implicated in the immunopathology
observed after T. gondii infection (94).

Intestinal immune homeostasis is dependent upon the suc-
cessful interaction of several compartments within the intesti-
nal tract. These include organized secondary lymphoid organs,
such as mesenteric lymph nodes, Peyer’s patches, and leuko-
cytes that are dispersed throughout the intestinal wall and
within the mucosa, the intraepithelial lymphocytes (IEL). Ep-
ithelial cells or enterocytes lining the alimentary tract serve
both as a physiologic barrier separating the lumen from un-
derlying tissues and as a source of immune inflammatory prod-
ucts. These enterocytes or immunocytes play a critical role in
mucosal immunophysiology that in part consists of a paracrine
network between enterocytes and the underlying immune and
inflammatory cells.

PARASITE-ENTEROCYTE INTERACTION

A number of protozoan parasites including Giardia intesti-
nalis and Giardia lamblia, Cryptosporidium parvum, T. gondii,
Eimeria spp., and Entamoeba histolytica have been shown to
adhere to and to multiply on or within enterocytes (89). At-
tachment to enterocytes appears essential for colonization of
the intestine and is requisite for the induction of host immunity
that will lead to enterocyte damage (39). Intestinal inflamma-
tion invariably is associated with an increase in epithelial cell
proliferation (59). In the small bowel the pathologic conse-
quences of this response include proliferation in the crypt and
a decrease in the number of enterocytes in the absorptive villus
compartment, which can lead to malabsorption. For the host,
this proliferation will presumably rid the intestine of infected
and damaged enterocytes that can be quickly replaced.

One mechanism utilized by the host for effective control and
removal of intestinal acquired parasites is the induction of NO
by the intestinal epithelium. NO is antimicrobial for a wide
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range of mucosal pathogens (13, 21, 37) and, furthermore, is
involved in the regulation of mucosal barrier integrity and
vascular tone in the gut (2). NO is produced enzymatically
from arginine through the action of NO synthase (NOS), which
in many cell types, including intestinal epithelial cells, is ex-
pressed in its inducible isoform (81, 97). Expression of induc-
ible NOS is constitutive in the mouse ileum and isolated nor-
mal duodenocytes (32) or is inducible in vivo during colonic
inflammation or in vitro by cytokines or in response to infec-
tion with invasive bacteria (81). In polarized intestinal epithe-
lial cells, the stable NO end products, nitrite and nitrate, are
preferentially detected on the apical side, suggesting that rel-
evant targets for epithelial cell-derived NO and its metabolites
may be located on the luminal side of the cells (97). Giardia
infection of the human intestine is a common protozoan infec-
tion and is the cause of self-limited diarrheal disease world-
wide. Giardia infection is restricted to the lumen of the intes-
tinal tract. NO inhibits growth, encystation, and excystation of
G. lamblia, but has no effect on giardial viability (20). Despite
the potent antigiardial activity of NO, G. lamblia is not simply
a passive target for host-produced NO but has strategies to
evade this potential host defense. In models of human intesti-
nal epithelium, G. lamblia inhibited epithelial NO production
by consuming arginine, the crucial substrate used by epithelial
NO synthase to form NO.

In C. parvum infection the interaction between the parasite
and enterocytes leads to diarrhea, which is characterized by the
impairment of glucose-stimulated Na1 absorption, a function
principally of villus-absorptive cells (67). When infected, these
cells express an increase in their prostaglandin production (3,
47) which can inhibit NaCl absorption and result in secretory
diarrhea. In addition to altering epithelial chloride and fluid
secretion, increased prostaglandin can upregulate epithelial
mucus expression, which could protect the host against further
infection and downregulate inflammatory cytokine production
by macrophages. Recently, it has been demonstrated that ep-
ithelial cells infected with C. parvum undergo caspase-depen-
dent apoptosis, which may further lead to the clinical manifes-
tations associated with enteric infection (72), in particular, the
cytolysis of the parasitized mucosa. Parasite may use apoptosis
to exit from the infected cell or the infected cell may eliminate
the parasite through apoptosis. However, C. parvum has de-
veloped strategies to limit apoptosis in order to facilitate
growth and maturation in the early period following epithelial
cell infection (63).

Intestinal acquired parasites may directly induce the produc-
tion of chemokines by epithelial cells. These chemokines may
be critical to the initiation of the mucosal inflammatory pro-
cess. C. parvum resides in epithelial cells, and infection of
human intestinal epithelial cells in vitro results in upregulated
expression and basolateral secretion of C-X-C chemokines
IL-8 and GROa (47). These results were expanded in a model
of human intestinal xenografts in SCID-HU-INT mice. After
C. parvum infection in vivo, human intestinal epithelial cells
produced IL-8 in association with TNF-a and IL-1b (87). Un-
like enteroinvasive bacteria, the kinetics of increased expres-
sion and production of IL-8 and GROa after C. parvum infec-
tion was delayed and most marked 16 to 48 h after infection
(46, 48). Although acquired by oral ingestion, T. gondii that
invades the epithelial cells of the intestine is not usually con-

sidered an enteric pathogen. However, inflammatory bowel
disease (IBD) has been observed following oral infection in
monkeys (15) as well as in rabbits. Similar evidence of IBD has
been reported in certain strains of inbred mice following oral
infection with T. gondii (55). This hyperinflammatory process is
associated with the early mortality of these susceptible mouse
strains. Recent studies in our laboratory have suggested that
both murine and human enterocytes when infected with T.
gondii produce significant quantities of proinflammatory che-
mokines, among which are IP-10, MCP-1, and MIP-2 (10a).
Using an in vitro system, we have determined that parasite-
infected enterocytes are chemoattractant for several different
cell types, including CD81 intraepithelial lymphocytes within
the mucosal compartment (D. Buzoni-Gatel et al., unpublished
observation).

Cell-cell interaction within the intestinal lumen may be al-
tered by protozoan infection. E. histolytica trophozoites colo-
nize the lumen and may disrupt the epithelial tight junction.
The principal clinical manifestation of the infection is due to
loss of this epithelial barrier with deterioration of normal phys-
iologic function. As the infection progresses, the cytotoxic ef-
fects of the parasite as well as molecular changes in the tight
junction protein complex (52) may further aggravate the pro-
cess. The tight junction complex constitutes, after the mucus,
the first barrier against the paracellular penetration of intesti-
nal microorganisms. This intercellular barrier is formed by the
plasma membrane-spanning proteins claudins (24) and occlu-
din (25) that associate with different peripheral plasma mem-
brane proteins such as the ZO. Tight junction complexes are
linked to the actin cytoskeleton (60). Selective disturbance of
tight junction complexes by trophozoites from E. histolytica
results in the rapid decrease of the transepithelial electrical
resistance caused by an increase in paracellular permeability
(51, 54, 61).

In addition to alterations in the tight junction, infection with
E. histolytica can stimulate the production of IL-8 from human
colonic epithelial cells (99) in the absence of cell-cell contact or
injury. Experimental models demonstrate that the epithelial
cells in response to parasite infection produced IL-1 and IL-8
(85). In vivo, infection of xenografts with E. histolytica tropho-
zoites results in extensive tissue damage associated with infil-
tration of neutrophils. Human intestinal epithelial cell inflam-
matory responses to amebic infection were inhibited by the
intraluminal administration of an antisense oligonucleotide to
the human p65 subunit of NF-kB. This treatment blocked the
production of human IL-1b and IL-8 by intestinal epithelial
cells and inhibited neutrophil influx into the E. histolytica-
infected intestinal xenografts. These data emphasize the role
of the intestinal epithelial cell in initiating the inflammatory
intestinal response after infection with E. histolytica (86). Oth-
er inflammatory molecules, including granulocyte-macrophage
colony-stimulating factor (GM-CSF) and IL-1a/b mRNAs,
were up regulated by E. histolytica infection (44).

Intestinal epithelial cells constitutively express major histo-
compatibility complex (MHC) class II, and this expression is
enhanced in states of inflammation (62). These enterocytes can
take up soluble antigens into an endolysosomal pathway, in-
cluding class II-containing compartment. This suggests that all
the mechanisms required for antigen processing and presenta-
tion exist within the enterocytes and that MHC class II ex-
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pressed on murine enterocytes is functional (38). However,
intestinal epithelial cells lack the costimulatory B7-1 and B7-2
expression, suggesting that enterocytes are poor antigen-pre-
senting cells compared to dendritic cells or macrophages (5).
In an antigen-overloaded environment such as the intestine,
the failure of classical class II-mediated activation may be
beneficial. Since most intraepithelial lymphocytes (see below)
are CD81, class II restriction may not be involved. There may
however be distinct surface molecules and restriction elements
that can present processed antigen to CD8 T cells. These
include the expression of the class Ib molecule CD1d as well as
the gp180 CD8 ligand. However, in spite of the close juxtapo-
sition of IEL and enterocytes, allogenic coculture of these cells
fails to result in T-cell activation. Recent data suggests that
CD1d and gp180 molecules together may activate a subpopu-
lation of CD81 regulatory T cells which function to suppress
the immune response in an antigen-nonspecific fashion (11).
These observations suggest that enterocytes may be a key com-
ponent in the immune homeostasis in the gut.

PARASITE AND INNATE IMMUNITY

Oral acquisition of a parasite may result in a robust innate
mucosal immune response in the infected host (Fig. 1). This

response may include activation of neutrophils, tissue macro-
phages, monocytes, dendritic cells, and eosinophils. Many of
these early-phase reactive cells are essential for the protective
response as well as the establishment of long-term immunity to
the parasite. Induction of chemokines such as IL-8 and GROa
play an important role in the chemoattraction and activation of
neutrophils. Polymorphonuclear leukocyte (PMN) attraction
and accumulation may participate in the development of the
intestinal lesion (86) as already illustrated in amebic infection.
In those studies, it was demonstrated that depletion in PMN or
inhibition of their attraction into the infected intestine results
in prevention of the development of intestinal lesions.

PMN accumulation is commonly associated with inflamed
intestine, this accumulation being due, in part, to a delay in the
apoptotic process (35). The lack of apoptosis may result from
the activity of G-CSF and GM-CSF (J. Y. Channon, K. Miselis,
L. Minns, and L. H. Kasper, submitted for publication). The
PMNs are an important source of proinflammatory cytokines,
such as IL-1b and TNF-a, and fully participate to the immune
response in the intestine. Infection with C. parvum results in a
spectrum of pathologic changes in the intestine accompanied
by patchy or large neutrophil and mononuclear infiltrates.
Neutrophils in mucosal secretions retain their ability to phago-
cytose and kill pathogens (18). In addition, neutrophils may

FIG. 1. A model of intestinal mucosal immune response to orally acquired protozoa. After oral infection, some parasites come in direct contact
with the enterocytes (Giardia), whereas Entamoeba may disturb the intercellular tight junctions as well as induce lysis of the epithelial cells. Other
parasites, such as C. parvum and T. gondii, are more invasive and penetrate into enterocytes or IEL (Eimeria). The infected enterocyte may fend
off the microbe by the production of NO as well as various chemokines that participate in the chemoattraction of neutrophils (PMN) and different
antigen (Ag)-presenting cells, such as macrophages (MF), monocytes, and dendritic cells (DC) from Peyer’s patches, mesenteric lymph nodes, or
the lamina propria (lamina propria lymphocytes [LPL]). In addition to their effect against parasites, these early inflammatory cells contribute both
to the development of the pathogenesis of the intestinal immune process and to the initiation of a long-lasting immunity by activation of T and
B cells. Although an essential component to the host defense, IFN-g that can be produced by intestinal T cells is also the principal cause of
inflammation in the intestine. Other cytokines, such as TNF-a, together with IFN-g may have a synergistic effect. Homeostatic mechanisms to
control the hyperinflammatory response are induced. Cells throughout the intestine participate in the control of this response by the secretion of
two essential downregulatory cytokines, TGF-b and IL-10.
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function to regulate other aspects of the inflammatory re-
sponse through the secretion of chemokines (57) at the site of
infection.

As noted above, parasite-infected epithelial cells produce a
variety of chemokines, including MCP-1, which may be in-
volved in macrophage migration to the site of infection. Mac-
rophages are well-known mediators of the host innate response
to a large array of microbial pathogens. Macrophages and
monocytes can control and kill parasites by both oxidative and
nonoxidative mechanisms. Parasite infection of intestinal tis-
sue will lead to a robust inflammatory process and the produc-
tion of a wide range of cytokines, such as IFN-g, TNF-a, and
IL-1. Intestinal inflammation is characterized by a strong Th1
response and macrophages are important during mucosal in-
flammation. In situ expression of cell adhesion molecules, such
as ICAM-1, may increase recruitment and further sustain the
inflammatory process (68). Lamina propria macrophages iso-
lated from patients with IBD display high levels of NF-kB
DNA binding activity, accompanied by increased production of
IL-1, IL-6, and TNF-a (33, 70). Other cytokines, such as IL-15
and IL-18 (65), enhance IFN-g production, which further en-
hances macrophage function.

IFN-g-activated macrophages exhibit microbicidal activity
by production of high levels of NO (17), which is toxic for a
variety of orally acquired parasites. IFN-g-primed macro-
phages produce TNF-a in response to the Gal-lectin antigen of
E. histolytica (84), which in turn promotes NO-mediated cyto-
toxicity against the parasite. Giardia trophozoites are suscep-
tible to the effect of IFN-g-activated macrophages (22), pre-
sumably through NO-mediated toxicity. Treatment of chicken
bone marrow macrophages with IFN-g inhibits intracellular E.
tenella replication via NO or toxic oxygen intermediates (17).
T. gondii is sensitive to the presence of NO in the mucosa
following oral infection (42). IFN-g activation can enhance
microbiostatic activity independent of the production of NO
residues. For example, IFN-g treatment may lead to the intra-
cellular deprivation of tryptophan and iron, which can be del-
eterious for T. gondii replication in both macrophages and
enterocytes (16, 75). In addition to their role in innate immu-
nity, the macrophages amplify the specific acquired immune
response and are necessary for antigen presentation that pro-
vides for long-term protection against recurrent infection.
However, macrophages may also serve as long-term host cells
that facilitate the replication and survival of the pathogens and
thereby serve as a vector for the invasion of the parasite (8).

Other first-line defense cells may be recruited to the site of
infection. Secretion of chemokines may result in the migration
and activation of dendritic cells or lamina propria cells to the
site of mucosal infection (40). Peyer’s patches represent the
primary site for uptake and presentation of ingested antigens
in the intestine. There are at least two different populations of
dendritic cells in the Peyer’s patches. Although there is mount-
ing information indicating that dendritic cells play an impor-
tant accessory function in response to a number of pathogens,
including T. gondii (78, 83), there is currently very little infor-
mation on the role of mucosal dendritic cells in response to
protozoan infection.

One of the unique features of mucosal lymphoid tissue such
as Peyer’s patches is their capacity to induce Th cells producing
type 2 (IL-4, IL-5, and IL-10) and type 3 (TGF-b) cytokines.

Induction of the Th cell response is important for immuno-
globulin A (IgA) production and generation of regulatory cell-
mediated oral tolerance. Despite this ability to generate Th2/
Th3 responses in mucosal tissues, distinct Th1 responses occur
in the mucosa, particularly following intestinal infection with
pathogenic microorganisms such as T. gondii or in IBD (36).
The mechanisms that determine the ability of Peyer’s patches
to generate TH2/Th3 responses yet allow for the differentia-
tion of Th1 response after infection with pathogenic organisms
remain uncertain. One possibility is that alteration of the cy-
tokine environment in the intestinal mucosa favors the differ-
entiation of Th2 and Th3 cells, but that pattern is overridden
by strong signals from pathogens, such as those that directly
induce IL-12 from antigen-presenting cells. Another important
factor may be the nature of the resident antigen-presenting
cells, compared to the cells that traffic to the infected sites.
Resident dendritic cells may differ in their capacities to drive
T-cell differentiation.

The role of eosinophils in determining the outcome of par-
asite infections is mentioned in some studies. Early studies
using T. gondii have demonstrated that IgE-bearing eosinophil
can be cytotoxic (79). Regarding E. histolytica infection, in vitro
data suggest that unlike normal human eosinophils which are
destroyed, eosinophils which have been activated by comple-
ment and armed with specific IgE antibodies effectively destroy
virulent E. histolytica (58). Unfortunately, the clinical rele-
vance of this finding is uncertain since amoebic colitis does not
appear to be associated with intestinal eosinophilia.

IEL AND INFECTION

In the intestine, the mucosal immune system consists of
organized secondary lymphoid organs, such as mesenteric
lymph nodes and Peyer’s patches, as well as leukocytes dis-
persed throughout the intestinal wall and particularly in the
mucosa. Mucosal lymphocytes, the IEL, are located between
epithelial cells, below the intercellular tight junctions, and ex-
press a set of surface receptors different from those of periph-
eral blood lymphocytes and comprise a phenotypically distinct
population. Although some differences exist between humans
and animals, more specifically mice, most of the IEL are T
lymphocytes and bear an oligoclonal repertoire of T-cell anti-
gen receptor (TCR). The TCR has two forms, ab and gd. In
the intestinal epithelia of numerous vertebrate hosts, TCR-gd
T cells are often present in large numbers. Up to 90% of IEL
are CD42 CD81, and most of these (60%) express the CD8
homodimer aa. The other population of CD81 cells bears the
CD8 heterodimer ab (29). Most IEL express the unusual in-
tegrin aEb7, which is involved in adherence to epithelial cells
by binding to E-cadherin. Although some IEL may develop
within the epithelium (77), it is likely that many IEL traffic
from blood vessels present in the lamina propria to the epi-
thelium. The IEL deficiency associated with a lack of b7 ex-
pression suggests that aEb7 is required for entry and/or reten-
tion of T cells in the intestinal epithelium (45, 96). T-cell
activation results in the accumulation of aEb7hi cells in the
mesenteric lymph nodes, lamina propria, and IEL compart-
ment, suggesting also a role for this molecule in lymphocyte
homing. Synthesis of the aE subunit is induced by the TGF-b
cytokine (4, 43). This cytokine is abundant in the gut epithelial

4 MINIREVIEW INFECT. IMMUN.



cells, located in the distal region of the villus, and can induce
aE synthesis in T cells following migration into the epithelial
microenvironment. Another integrin, a4b7, expressed in low
frequency on IEL is evident on lamina propria lymphocytes
and on approximately 50% of T cells (6, 71).

Activated lymphocytes expressing a4b7 can bind to several
receptors, the most prominent of which is MadCAM-1, a pro-
tein expressed by high endothelial venule (HEV) cells in Pey-
er’s patches and mesenteric lymph nodes and the flat endothe-
lium in the lamina propria (6, 92). Studies indicate that the
interactions of a4b7 and MadCAM-1 play a major role in
lymphocyte homing to Peyer’s patches, lamina propria, and
mesenteric lymph nodes (31). Diapedesis from the microvas-
culature occurs in response to the expression of the a4b7
molecule.

Although the migration of T cells into the intestinal epithe-
lium is not fully understood, IEL have in vitro chemotactic
activity in response to several different chemokines, including
IL-8, RANTES, MCP, MIP, crg-2, and MuMig (murine mono-
kine induced by gamma interferon), all of which can be pro-
duced by activated enterocytes (80). Infection of the gut with
mucosal pathogens can result in the migration and activation
of IEL. Infection with Eimeria vermiformis, results in an in-
crease in the number of recoverable IEL at 3 and 14 days
postinfection. The IEL repertoire, and, more precisely, the
gd1 T-cell repertoire, has been shown to be very dynamic
postinfection with a naturally occurring epithelialtropic patho-
gen (23). Following G. lamblia infection in inbred mice, quan-
titation of T-cell subsets in the intraepithelium (IEL) and lam-
ina propria revealed increased influx of CD8 T cells and
Thy1.21 T cells followed by an increase in CD4 T cells in the
lamina propria (95). IEL provide a number of important im-
munologic functions, including cytotoxic activity (28, 29), se-
cretion of cytokines including IL-2, IL-3, IL5, TNF-a, TGF-b,
IL-10, and IFN-g (30, 49), and modulation of epithelial cell
death and regeneration.

Evidence that IEL population in the intestine has a major
role in immunity has been obtained from experimental studies
of in vivo infection with Toxoplasma and Cryptosporidium spp.
Adoptive transfer of T. gondii antigen-primed IEL into the
naı̈ve host provide long-term protection following lethal para-
site challenge as determined by reduced mortality and de-
creased number of brain cysts in the recipient. The protective
IEL are CD81a/b1, a/b TCRs and are partially dependent
upon the presence of intact g/d TCRs as well as endogenous
production of IFN-g (10, 50) in the recipient host. Increased
expression of the activated memory T-cell phenotype, in par-
ticular Ly-6C, was noted in the protective IEL cell population.
T. gondii antigen-primed IEL can traffic to the intestine and
stimulate long-term immunity to reinfection. The ability of
these cells to traffic to the intestine is dependent upon the
expression of the appropriate integrins which if blocked in-
creases susceptibility to parasite challenge. A combined treat-
ment with anti-a4 and anti-aE monoclonal antibodies partial-
ly inhibited IEL trafficking and impaired host resistance to T.
gondii (9). The predominant functional role of aEb7 is to
retain lymphocytes within or closely apposed to epithelial cells.
Since IEL are cytotoxic for T. gondii-infected enterocytes in
vitro (12), aEb7 may play an integral role in that interaction.
Intestinal epithelial cells inhibit the proliferative and cytokine

responses of intraepithelial T cells (98) and may be involved in
control of the extensive intestinal hyperinflammatory response
in certain strains of mice (42, 55). We have observed that
T. gondii antigen-primed IEL produce substantial amounts of
TGF-b. The mucosal inflammatory process observed after oral
infection with T. gondii in susceptible C57BL/6 mice is medi-
ated by NO. The inflammation can be reversed when suscep-
tible mice are treated with an NO blocking agent, such as
aminoguanidine. Observations to date suggest that local pro-
duction of IFN-g perhaps from the CD4 lymphocytes in the
lamina propria or NK cells may be responsible for this activity.
Supplementation of exogenous TGF-b to susceptible mice re-
verses the hyperinflammation, whereas treatment of resistant
strains such as CBA with a blocking antibody to TGF-b ren-
ders them susceptible. In vitro, coculture of antigen-primed
IEL can reverse IFN-g synthesis of primed splenocytes per-
haps via a TGF-b-mediated pathway (Kasper et al., submit-
ted).

IL-10 appears to be an important component in maintaining
gut homeostasis in response to orally acquired pathogens. In-
creased mortality of IL-10 knockout (KO) mice is presumed
secondary to the abnormally high inflammatory cytokine re-
sponse during acute toxoplasmosis (27). Mice deficient in
IL-10 synthesis exhibit increased inflammation in their intes-
tines following oral infection with T. gondii (90). Mice that
have been reconstituted with the gene for IL-10 expressed on
the IL-2 promoter regain their ability to control the hyperin-
flammation (K. Ely, unpublished observation). The source for
IL-10 production within the infected intestine is as yet unde-
termined.

In Cryptosporidium muris infection, immunity can be adop-
tively transferred to SCID mice using postinfection intestinally
derived IEL. Of note however, in contrast to T. gondii infec-
tion, protection was associated with the CD41 T-cell popula-
tion as opposed to CD81 (14). When adoptively transferred
into SCID mice, primed IEL traffic back to the intestine. IEL
from C. muris-infected mice produce significant quantity of
IFN-g in the presence of antigen-presenting cells. Treatment
of recipient mice with anti-IFN-g abrogated the protection (14,
64). This is similar to the observations made following adoptive
transfer of T. gondii antigen-primed CD81. Of note is that
transfer of primed CD81 IEL from wild-type mice into IFN-g
KO mice failed to protect against a T. gondii challenge (50). In
contrast, adoptive transfer of IEL from IFN-g KO mice into
the wild type is protective. These data suggest that host IFN-g
is essential for protection. Although less documented, the pos-
sible implication of IEL in anti-Giardia immunity has been
suggested. Human CD41 T lymphocytes from the intestine
proliferate in response to Giardia infection and produce
IFN-g. Moreover, murine intraepithelial lymphocytes from a
Giardia-infected host are cytotoxic to the parasite (19).

IEL may be associated with the parasite life cycle. A study by
transmission electron microscopy performed with mice after
infection with sporozoites of T. gondii reveals that sporozoites
passed through intestinal epithelial cells and infected a number
of different cell types within the lamina propria. Sporozoites
did not infect intraepithelial lymphocytes, but at 48 h postin-
fection, IEL could be infected with tachyzoites arising from
those that had developed in the lamina propria (89). In chick-
ens, Eimeria multiplication occurs within enterocytes and the
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sporozoites of some species such as E. tenella enter the epi-
thelium at the villous tip but migrate to the crypt where intra-
cellular development commences. Sporozoites at the villous tip
transfer from epithelial cells to IELs and are then translocated
within these cells via the lamina propria to the crypt. CD8 cells
are mostly the carrier of the sporozoites (56). Eimeria infec-
tions induce changes in the intestinal intraepithelial population
(7, 23). Growth of the parasite in the intestinal epithelium
leads to the development of the host immune response and
CD81 cells, which increased in number after challenge infec-
tion, seem to act as effector cells in acquired immunity (93).

CONCLUSION

Many pathogens are acquired via ingestion and invasion of
the intestinal tract. Despite the diversity of the extracellular
and intracellular pathogens discussed in this review, our cur-
rent understanding of the mechanisms involved in the immune
response indicates that a common exuberant immune response
to rid the host of these agents is elicited. This robust inflam-
matory response is controlled by a series of regulatory mech-
anisms in most species. When this balance is no longer evident,
a lethal inflammation of the intestine may occur, such as IBD
or acute ileitis. The delicate balance between these dichoto-
mous responses provides the host with protection against the
pathogen yet maintains the integrity of the mucosal surface.
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